Χ

NI IEL

Courses » Industrial Instrumentation

Announcements

Course

Forum

Progress

Mentor

Unit 5 - Week 4

Course outline	Week 4 Assignment 4
How to access the portal	
Week 1	1) 2 points
Week 2	The pressure and velocity at the throat of a Venturi tube, measuring the flow of a liquid
	are related to the upstream pressure and velocity, respectively, as follows:
Week 3	(a) Pressure is lower but velocity is higher.
Week 4	(b) Pressure is higher but velocity is lower.
Lecture 10:	(c) Both pressure and velocity are higher
Flowmeter - I	(d) Both pressure and velocity are lower.
Lecture 11:Flowmeter - II	
Quiz : Week 4	Accepted Answers: (a) Pressure is lower but velocity is higher.
Assignment 4	
Feedback forWeek 4	2) 2 points What is the maximum useful range (in terms of % of full-scale output) of differentia
Week 4:	flow meters?
Assignment Solution	
Week 5	(a) 40 % to 100 %
Week 5	(b) 75 % to 100 %
Week 6	(c) 50 % to 100 % (d) 25 % to 100 %
Week 7	
Week 8	Accounted Anguages
Week 9	Accepted Answers: (d) 25 % to 100 %
Week 10	3) Turbine flowmeters are most suitable for-
Week 11	(a) Low viscosity, high flow
	(b) Low viscosity, low flow
Week 12	(c) High viscosity, high flow
	(d) High viscosity, low flow
	Accepted Answers:
	(a) Low viscosity, high flow
	4) 2 points

Water is pumped through a 75 mm diameter pipe with a flow velocity of 760 mm/sec. Find (i) the volume flow rate (m³/sec) and (ii) mass flow rate (kg/sec).
(a) (i) 3.3575*1e-3 (ii) 6.715 (b) (i) 3.3575*1e-3 (ii) 3.3575 (c) (i) 6.715*1e-3 (ii) 3.3575 (d) (i) 6.715*1e-3 (ii) 6.715
Accepted Answers: (b) (i) 3.3575*1e-3 (ii) 3.3575
5) 5 points
A rotameter uses a cylindrical float of 3.5 cm height, 3.4 cm diameter and density o
3985 kg/m ³ . The maximum inside diameter of the metering tube is 6 cm. Determine the maximum flow rate handling capacity (in m ³ /sec) of the rotameter if the fluid is water
Assume $C_D = 0.75$.
(a) 1.403*1e-3
(b) 4.209*1e-3
(c) 2.806*1e-3
(a) 5.612*1e-3
Accepted Answers: (c) 2.806*1e-3
6) 2 points
A rotameter is constructed using a float of density 1900 kg/m ³ . It is calibrated for
metering a gas of density 1.3 kg/m ³ and has a scale ranging from 0.018 m ³ /min to 0.18
m ³ /min. Now, it is intended to use this meter for metering the same gas within a flow range of 0.036 m ³ /min to 0.36 m ³ /min. What should be the density (kg/m ³) of the new
float? Both the floats can be assumed to have the same volume and shape.
(a) 1900
(a) 1900 (b) 3800
(c) 5700
(d) 7596.1
Accepted Answers: (d) 7596.1
7) 2 points
The flow of cooling water is measured with the help of a horizontal venturimeter with
200 mm inlet and 100 mm throat. A U-tube manometer connected between the inlet
and throat of the venturimeter shows a differential pressure of 235 mm of mercury
Calculate the flow rate (in cm 3 /sec) if C _D = 0.975, specific gravity of mercury is 13.6
density of water is 1 g/cm ³ .
(a) 62603.62
(b) 31301.81
(c) 15650.91
(d) 7825.45

Accepted Answers: (a) 62603.62 8) 2 points Determine the nominal flow velocity (in cm/sec) at the orifice (diameter: 30 mm) kept in a pipe of 60 mm diameter. Reynolds number R is 10⁵. Assume density of water = 1000 kg/m³ and kinematic viscosity (K) is 10⁻² cm²/s. (a) 166.667 (b) 333.334 (c) 1000 (d) 666.667 Accepted Answers: (d) 666.667 Previous Page End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development Powered by

